

PUNYASHLOK AHILYADEVI HOLKAR SOLAPUR UNIVERSITY, SOLAPUR

FACULTY OF SCIENCE & TECHNOLOGY

S. Y. B. Tech (Electronics & Telecommunication Engineering) NEP 2020 Compliant Curriculum With effect from 2024-2025

Semester –IV

Distribution	Course Code	Name of the Course	Engagement Hours		Creatita	FA	SA			Tetal	
		Name of the Course	L	Τ	P	Credits	ESE	ISE	ICA	<i>OE</i> /	Totai
										PO E	
PCC	ENTPCC-04	Signals and Systems	3			03	70	30			100
PCC	ENTPCC-05	Control System	2	1		03	70	30	25		125
PCC	ENTPCC-06	Analog Integrated Circuits	3		2	04	70	30	25	25	150
SEC	ENTSEC-01	Data Structure	1		2	02			25	25	50
Economic/ Management	EM-02	Project Management and Economics	2		0	02		25	25		50
OE	OE-02	Open Elective-II	2		2	03	70	30	25		125
MDM	ENTMDM-02	MD Minor-II	2		2	03	70	30	25		125
VEC	VEC-01	Professional Ethics	1		2	02	50*		25		75
		Total	16	1	10	22	400	175	175	50	800
		Environmental Science	1				40	10			50

*VEC-01 Examination will be MCQ based

BSC- Basic Science CourseESC- Engineering Science Course,PCC- Programme Core Course, AEC-Ability Enhancement Course,IKS- Indian Knowledge System,CC- Co-curricular Courses,

VSEC-Vocational and Skill Enhancement Course

Basket of Multidisciplinary Minor (MDM)

A) Multidisciplinary Minor in "Controllers and Applications"

Semester	Course Code	Course Title
III	ENTMDM-01A	Digital Techniques
IV	ENTMDM-02A	8051 Microcontroller
V	ENTMDM-03A	PIC Microcontroller
VI	ENTMDM-04A	Advanced Microcontrollers
VII	ENTMDM-05A	Programmable Logic Controller

B) Multidisciplinary Minor in "Internet of Things"

Semester	Course Code	Course Title
	ENTMDM-01B	Sensor Technology
IV	ENTMDM-02B	Fundamentals of IoT
V	ENTMDM-03B	IoT Networks and Security
VI	ENTMDM-04B	Industrial IoT
VII	ENTMDM-05B	IoT Cloud Platform

A) Multidisciplinary Minor in "Controllers and Applications"

Semester	Course Code	Course Title
IV	ENTMDM-02A	8051 Microcontroller

A) Multidisciplinary Minor in "Internet of Things"

Semester	Course Code	Course Title
IV	ENTMDM-02B	Fundamentals of IoT

Punyashlok Ahilyadevi Holkar Solapur University, Solapur S. Y. B. Tech (Electronics & Telecommunication Engineering)

Semester-IV (as per NEP) w.e.f. 2024-25

MDM- 02B: Fundamentals of IOT

Teaching Scheme:	Examination Scheme:
Lecture - 2 Hrs/week, 2 credits	ESE- 70 Marks
Practical - 2 Hrs/week, 1 credits	ISE - 30 Marks
	ICA – 25 Marks

Course Objective:

- 1. Describe the evolution of the IoT concept.
- 2. Explain the basic characteristics of IoT.
- 3. Distinguish the IoT from other related technologies.
- 4. Explain the IoT architectures.
- 5. Articulate the pros and cons of IoT.
- 6. Apply the IoT architecture concepts for specific IoT applications.
- 7. Understand the implementation aspect of IoT architecture.

Course Outcome:

After completion of the Course, Students will be able to:

- 1. Understand the basics of IoT, things, smart connecting devices, IP & network layers, application protocols
- 2. Implement of blocks of IoT system things, smart devices, IP & network layers, application protocols
- 3. Apply the various Things, smart devices IoT Protocols and Application Protoco (Datalink, Network, Transport, Session, Service) for real-time applications
- 4. Analyse of various existing IoT Systems
- 5. Evaluate various IoT architecture, IoT protocols with relevant hardware/software

Prerequisite:

• Basic knowledge of microprocessor, C programming

UNIT-I: Introduction:

(03 Hrs)

The genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and OT, IoT Challenges

Internal Continuous Assessment (ICA):

At Least 08 practical's based on topics of the syllabus to be performed either in software tools and/or

UNIT-II: IoT Network Architecture:

Drivers behind new network architectures, Comparing IoT architectures, A simplified IoT Architecture, The core IoT functional stack, IoT Data management and compute stack

UNIT-III: The "Things" in IoT:

Introduction to IoT enabled devices, Sensors, Actuators, Micro-electro-mechanical systems (MEMS), Introduction to Arduino,/R

SECTION – II

UNIT-IV: Connecting Smart Objects:

Communication criteria, IoT Access Technologies – IEEE 802.15.4, IEEE 802.15.4g & 802.15.4e, IEEE 1901.2a, IEEE 802.11ah, LoRaWAN, NB-IoT and other LTE variations

UNIT-V: IP as the IoT Network Layer:

The business case for IP, The need for optimization, optimizing IP for IoT, Profiles and Compliances

UNIT-VI: Application Protocols for IoT:

The transport layer, IoT Application Transport Methods, SCADA, Generic web-based protocols, IoT application layer protocols: CoAP, MQTT.

hardware kits.

Exp. NO.	List of Experiments
Exp:1	Study the fundamental of IOT software's and components.
Exp:2	Familiarization with Arduino/Raspberry Pi and perform necessary software
Exp:3	To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.
Exp:4	To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.
Exp:5	To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.
Exp:6	To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.
Exp:7	To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
Exp:8	To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when _1'/'0' is received from smartphone using Bluetooth

(05Hrs)

(05 Hrs)

(04 Hrs)

(05 Hrs)

(04 Hrs)

E-m o	Write a program on Arduino/Raspberry Pi to upload temperature and humidity					
Exp:9	data to thingspeak cloud.					
Exp:10	Write a program on Arduino/Raspberry Pi to retrieve temperature and					
	humidity data from thingspeak cloud.					

Text Books-

Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on- Approach)", 1st Edition, VPT, 2014.

Reference books-

- 1. David Hanes, Gonzelo Salgueiro, Patrick Grossetete, Robert Barton, and Jerome Hentry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", Cisco Pres, 2017.
- Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.
- 3. Peter Waher, "Learning Internet of Things", PACKT publishing, BIRMINGHAM MUMBAI
- 4. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156- 5 e-ISBN 978-3-642-19157-2, Springer
- 5. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publ